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An iron(II) chloride complex possessing a sterically
demanding ortho-phenylene-tethered bisphosphine ligand shows
a high catalytic activity in the KumadaTamaoCorriu coupling
of nonactivated alkyl halides with aryl Grignard reagents.
Primary, secondary, and tertiary alkyl halides can participate as
an electrophilic coupling partner. A radical clock experiment
using (iodomethyl)cyclopropane exclusively gives the corre-
sponding ring-opening coupling product, suggesting intermedi-
acy of alkyl radical species.

Transition-metal-catalyzed cross-coupling is one of the most
powerful tools in organic synthesis.1 After dormancy for
decades, iron has attracted renewed attention as a practical
coupling catalyst due to its economic and ecological advantages
over the other rare metal catalysts.2,3 Moreover, iron catalyst
displays characteristic reactivities and selectivities, which cannot
be easily attained by the prevalent Ni- and Pd-catalysts: several
research groups, including us, have reported the cross-coupling
reactions of nonactivated alkyl halides with Grignard reagents
by using iron catalysts.3h3j,3m3o,3t,3u In 2004, we introduced
TMEDA as a Lewis basic additive into the iron-catalyzed cross-
coupling reaction to obtain the desired reactivity toward the
alkyl halides.3h Although high selectivity and reactivity were
achieved by using TMEDA with the optimized experimental
procedure, large excess of the additive was required. In order to
control the reaction by using a catalytic amount of additives
instead of TMEDA, we continued the study and have developed
new ortho-phenylenebisphosphine ligands, which bear periph-
eral steric bulk around the iron center.4 We report herein a new
KumadaTamaoCorriu coupling between various nonactivated
alkyl halides and aryl Grignard reagents effected by low catalyst
loading (0.5 to 3mol%) of the ironbisphosphine complex.

According to Nagashima’s report on the reaction of
dimesityliron(II)-N,N,N¤,N¤-tetramethylethylenediamine, [Mes2-
FeII(tmeda)], with an alkyl halide (eq 1), it was suggested that
the reactive iron species should adopt a tetrahedral geometry in
high-spin state (S = 2).5
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As shown in Scheme 1, we designed and synthesized a novel
ortho-phenylene-tethered bisdphosphine ligand possessing bulky
substituents at the 3,5-positions of phenyl groups on the phos-
phorus atoms, 1,2-bis{bis[3,5-di(t-butyl)phenyl]phosphino}-

benzene6 (hereafter named 3,5-t-Bu2-SciOPP4c,7) and also
prepared its iron(II) chloride complex [FeCl2(3,5-t-Bu2-
SciOPP)].4 The iron complex exhibited the above-mentioned
properties of the catalytically active iron species, and we
anticipated that the bulky substituents would bring about
peripheral steric bulkiness around the iron center to maintain
the desired properties upon transmetalation with aryl Grignard
reagents, emulating Nagashima’s [Mes2FeII(tmeda)].

Having the iron complex in hand, we examined the coupling
reaction of alkyl halides with aryl Grignard reagents in the
presence of catalytic amounts of [FeCl2(3,5-t-Bu2-SciOPP)].
Table 1 summarizes the results of catalyst screening for the
reaction of bromocycloheptane (2) with the phenyl Grignard
reagent. To a THF solution of 2 and the iron complex was added
dropwise the Grignard reagent over 20min at 25 °C according to
a procedure we reported previously.3h In the absence of the
phosphine ligand, coupling product (3) was obtained in 21%
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Scheme 1. Synthesis of an iron complex.

Table 1. Screening of iron catalyst

PhMgBr
(1.5 equiv)

25 °C, 20 min,
slow addition

2

THF, 0 °C

3

4

5

Br

Ph
iron catalyst
(0.5 mol%)

Entry Iron catalyst
Yield/%a Recovery/%a

3 4 5 2

1 FeCl3 21 69 6 0
2b [FeCl2(dppbz)2] 50 20 4 25
3b [FeCl2(3,5-t-Bu2-SciOPP)] 84 14 0 1
4c [FeCl2(3,5-t-Bu2-SciOPP)] 92 8 0 0
aThe yield and recovery were determined by GC analysis using
undecane as an internal standard. bAll data are the average of
two or three experiments. c0.5mol% of 3,5-t-Bu2-SciOPP was
used as an additive.
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yield along with the undesired formation of cycloheptene (4) and
cycloheptane (5) in 69% and 6% yield, respectively (Entry 1).
[FeCl2(dppbz)2], which is an efficient catalyst for Negishi
coupling reactions,8 gave 3 in a modest yield (Entry 2).
[FeCl2(3,5-t-Bu2-SciOPP)] gave 3 in 84% yield and further
improvement has been achieved by using 0.5mol% of the free
ligand along with 0.5mol% of the iron complex (Entries 3
and 4). We assume that partial dissociation of the ligand
followed by nonselective reaction is presumably suppressed by
the addition of the free ligand.

Under the optimized conditions (Entry 4, Table 1), the
scope of the reaction was further examined (Table 2). Most of
the reactions proceeded in good to excellent yield in the
presence of 0.53.0mol% of the iron catalyst. Less reactive
substrates require higher reaction temperature (40 °C) and/or
slower addition of the Grignard reagent (3 h) in general.9,10

Notably, electron-deficient and sterically demanding aryl
Grignard reagents can participate in the reaction (Entries 4, 6,
and 7). Not only primary and secondary alkyl halides but also a
tertiary alkyl halide gave the coupling product in good yield
(Entry 8). 1-Bromo-4-(2-bromoethyl)benzene possessing two
potential reactive sites, Csp

2Br and Csp
3Br, reacted with the

p-anisyl Grignard reagent via a selective Csp
3Br bond cleavage,

providing the corresponding coupling product in 78% yield
(Entry 9).

As shown in Scheme 2, the intermediacy of alkyl radical
species in the present coupling reaction was confirmed by the
reactions of (iodomethyl)cyclopropane (6): in the presence of
3.0mol% of the iron catalyst, the reaction with mesityl Grignard
reagent proceeded at 40 °C to give the ring-opening product (7)
exclusively in 74% yield.

In summary, we have developed highly efficient iron-
catalyzed cross-coupling of alkyl halides with aryl Grignard
reagents with the aid of ortho-phenylene-tethered bisphosphine
ligand possessing bulky substituents at the 3,5-positions of the
diphenylphosphino groups (SciOPPs). The present method
provides a facile and nonhazardous access to a variety of
substituted aromatics in laboratory as well as industry.
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